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Abstract—Rapid advances in perception have enabled large
pre-trained models to be used out of the box for transforming
high-dimensional, noisy, and partial observations of the world into
rich occupancy representations. However, the reliability of these
models and consequently their safe integration onto robots remains
unknown, particularly when deployed in environments unseen
during training. To provide safety guarantees, we rigorously
quantify the uncertainty of pre-trained perception systems for
object detection and scene completion via a novel calibration
technique based on conformal prediction. Crucially, this procedure
guarantees robustness to distribution shifts in states when
perception outputs are used in conjunction with a planner. As a
result, the calibrated perception system can be used in combination
with any safe planner to provide an end-to-end statistical assurance
on safety in unseen environments. We evaluate the resulting
approach, Perceive with Confidence (PWC), in simulation and on
hardware where a quadruped robot navigates through previously
unseen static indoor environments. These experiments validate
the safety assurances for obstacle avoidance provided by PWC.
In simulation, our method reduces obstacle misdetection by 70%
compared to uncalibrated perception models. While misdetections
lead to collisions for baseline methods, our approach consistently
achieves 100% safety. We further demonstrate reducing the
conservatism of our method without sacrificing safety, achieving
a 46% increase in success rates in challenging environments while
maintaining 100% safety. In hardware experiments, our method
improves empirical safety by 40% over baselines and reduces
obstacle misdetection by 93.3%. The safety gap widens to 46.7%
when navigation speed increases, highlighting our approach’s
robustness under more demanding conditions.

I. INTRODUCTION

How can we decide if the outputs of a given perception
system are sufficiently reliable for safety-critical robotic
tasks such as autonomous navigation? Significant strides in
perception over the past few years have enabled large pre-
trained models to be used out of the box [1] for tasks such
as object detection and occupancy prediction, which serve
as a fundamental building block for navigation. However,
current pre-trained models are still not reliable enough for
safe integration into many real-world robotic systems. Despite
being trained on vast amounts of data, these systems can often
fail to generalize to novel environments [2–4]. In this paper,

we ask: how can we leverage the power of large pre-trained
perception models while providing safety assurances for robot
navigation?

Consider a legged robot tasked with navigating a cluttered
environment such as a home, office, or warehouse (Figure 1).
A typical navigation pipeline for such a system consists of two
modules: (i) a perception module that detects obstacles, and (ii)
a planner that produces collision-free trajectories assuming ac-
curate perception. However, there are two challenges associated
with obtaining reliable outputs from the perception module.
First, the environments in which we deploy our robots will be
unseen during training, and thus require generalization to new
obstacle geometries, appearances, and other environmental
factors. Second, closed-loop deployment of the perception
system in conjunction with a planner causes a shift in the
distribution of states (e.g., relative locations to obstacles) that
are visited by the robot. Since the robot’s planner influences
future states, the robot may view obstacles from unfamiliar
relative poses (Figure 1), which can cause the perception system
to fail.

In this paper, we address these challenges by performing
rigorous uncertainty quantification for the outputs of a pre-
trained perception system in order to achieve reliably safe
(i.e., collision-free) navigation. We utilize techniques from
conformal prediction [5] in order to lightly process the outputs
of a pre-trained perception system in a way that provides
a formal assurance on correctness, i.e., with a user-specified
probability 1−ϵ, the processed perception outputs will correctly
detect obstacles in a new environment. To enable this, we
assume access to a relatively small-sized (e.g., | · | = 400)
dataset of environments that are representative of deployment
environments with ground-truth obstacle annotations, and use
these for calibrating the outputs of the perception system.
Crucially, we propose a novel calibration technique that
ensures robustness of the perception system to any closed-
loop distribution shift in states. Hence, the calibrated outputs
can be used in conjunction with any safe planner to provide
an end-to-end statistical assurance on safety in new static
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Fig. 1: PWC lightly processes the outputs of a pre-trained perception system (green bounding boxes) using conformal prediction
in order to ensure a bounded misdetection rate despite any distribution shift in states (gray dots). The calibrated perception
system (blue boxes) paired with a non-deterministic filter and a safe planner provide an end-to-end statistical assurance on
safety in new test environments.

environments with a user-specified threshold 1 − ϵ. To the
best of our knowledge, this is the first work to calibrate a
black-box perception system in a way that ensures robustness
to closed-loop distribution shifts in order to provide end-to-end
statistical assurances on safe navigation.

Our proposed framework, Perceive with Confidence (PWC),
is amenable to different types of perception systems, e.g.,
bounding-box prediction perception systems and scene-
completion perception systems. A preliminary version of
this work, which was presented at the Conference on Robot
Learning [6], focused on the calibration of bounding-box
predictions from onboard robot perception systems. In the
preliminary version, we demonstrate the end-to-end safety
guarantees provided by PWC in simulated and hardware
experiments on the Unitree Go1 quadruped navigating in indoor
environments with objects that are unseen during calibration
(Figure 1), where PWC achieves up to 40% increase in safety
with only modest reductions in task completion rates compared
to baselines that use the pre-trained perception model directly,
fine-tune it on the calibration dataset, or utilize conformal
prediction for uncertainty quantification but do not account for
closed-loop distribution shift.

However, bounding boxes lack the high level of expres-
siveness required for high-accuracy occupancy predictions
in environments with complex geometry. In this work, we
extend PWC to perception systems that predict 3D occupancy
maps, providing higher-fidelity scene representations for robot
planning and navigation. Specifically, in this paper, we derive
procedures for calibrating unsigned distance functions predicted
by scene-completion models to safely decompose a robot’s
environment into free and occupied space. We call the resulting
method PWC-NU-MCC, based on the scene-completion model
used in this work, NU-MCC [7]. In addition, we present
simulated experiments on a quadruped robot, demonstrating
that PWC-NU-MCC outperforms the calibrated bounding-box
predictor, improving the goal-reaching rate by 46%, particularly
in scenes with intricate geometry (Section VII-B). Further,
we present additional quadruped robot experiments, achieving

faster navigation with the robot moving more than three times
faster compared to our original experiments (Section VIII-B).

The rest of the paper is organized as follows: we first review
relevant literature in Section II. In Section III, we formulate
the problem of rigorous calibration of perception systems with
safety guarantees. In Section IV, we provide a brief introduction
to conformal prediction. Next, we discuss the offline calibration
of perception systems in Section V followed by a discussion of
the online perception and planning procedure Section VI. We
present simulated and hardware experiments on a quadruped
robot in Sections VII and VIII, respectively. We conclude
in Section IX and provide additional discussion, including
simulations and hardware results, in the Appendix.

II. RELATED WORK

Safe planning. Collision avoidance is a crucial goal in
autonomous navigation. Safe planning methods typically rely
on the assumption that the robot has perfect knowledge of its
state and environment [8]. Recent approaches have allowed for
occlusion [9–12] or accounted for losing sight of a previously
tracked object [13], but still require either perfect detection of
seen objects or bounded sensor noise. Such assumptions are
impractical for learning-based perception modules that can fail
catastrophically in new environments.
Formal assurances for perception-based control. Proposed
methods include control barrier functions (CBFs) [14, 15],
verification methods on neural networks (NNs) [16, 17], and
other learning-based methods [17–24]. However, these works
either do not guarantee generalization to novel environments
[16, 17], ignore closed-loop distribution shifts [20, 21], require
end-to-end training and a good prior [22–24], or demand
usage/design of specific controllers [14, 15, 18, 25]. Some
make strong assumptions on the perception system [26, 27]
that are unrealistic for deployment. In contrast, our method
doesn’t need any of the above, and is lightweight and modular,
allowing for the use of any downstream safe planners to ensure
end-to-end safety.
Conformal prediction. Conformal prediction (CP) [5, 28, 29]



is an uncertainty quantification framework particularly suitable
for robotics applications [30–33] where learned modules are
deployed in environments drawn from unknown distributions. In
this work, we focus on providing uncertainty quantification for
the perception system, which usually involves high-dimensional
inputs and closed-loop distribution shifts. Prior works [20, 32,
34, 35] either provide guarantees for a single environment,
assume known environments, or do not account for closed-loop
distribution shifts. To the best of our knowledge, this is the first
work to obtain end-to-end safety assurances for the perception
and planning system in new environments while being robust
to closed-loop distribution shifts and amenable to changes in
the planner parameters.

III. PROBLEM FORMULATION

Dynamics and environments. Suppose that the dynamics of
the robot are described by st+1 = fE(st, at), where st ∈ S is
the robot’s state at time-step t, at ∈ A is the action, and E ∈ E
is the environment that the robot operates in during a given
episode. We primarily focus on navigation with static obstacles;
in this context, the environment E specifies the locations
and geometries of objects. We assume that environments that
the robot will be deployed in are drawn from an unknown
distribution DE , e.g., a distribution over possible rooms that
the robot may be deployed in. We will make no assumptions
on this distribution besides the ability to sample a finite dataset
D = {E1, . . . , EN} of independent identically distributed
(i.i.d.) environments from DE .

Sensor and perception system. We consider a robot equipped
with a sensor σ : S × E → O that provides observations
ot = σ(st, E) (e.g., depth images) based on the robot’s state
and environment. We assume access to a pre-trained perception
model ϕ : O → Z , which processes raw sensor observations
ot into an occupancy representation of the environment zt. For
example, models for 3D object detection can produce bounding
boxes for obstacles [36], perform shape completion [37], or
predict free space in the environment [38]. We demonstrate our
framework with two types of perception models: (i) models
for obstacle detection that output 3D bounding boxes, and (ii)
models for scene reconstruction that output occupancy grid
maps. The representations (z0, . . . , zt) up to the current time-
step are aggregated into an overall representation mt ∈ M
(e.g., a map). We denote predicted occupied space in green and
predicted free space in blue, except where noted otherwise.

Planner and Policy. The planner utilizes the environment
representation mt to compute actions for the given task.
We denote the resulting end-to-end policy that utilizes a
perception model ϕ by πϕ : Ot+1 → Zt+1 → M → A, which
maps histories of sensor observations to actions.

Safety and task performance. Let Csafe
E be a cost function that

captures safety (e.g., obstacle avoidance). In addition, let S0,E

denote the allowable set of initial conditions in environment
E. Then, Csafe

E (πϕ) ∈ {0, 1} assigns a cost of 0 if policy
πϕ maintains safety from any initial state s0 ∈ S0,E when
deployed over a given time horizon in environment E, and a

cost of 1 otherwise. Although we only present safety-oriented
cost functions here, additional cost functions can be used to
capture task performance, e.g., C task

E which minimizes the time
to reach the goal.

Goal (statistical safety assurance). Our goal is to provide a
statistical assurance on safety for the end-to-end policy πϕ. We
propose a procedure that uses a finite dataset D of environments
in order to produce a calibrated perception system ϕ̃ : O ϕ−→
Z ρ−→ Z . Our approach is modular: outputs of the calibrated
perception system may be used with any safe planner (cf.
Section VI) to provide probabilistic guarantees on safety, with:

Csafe
DE

(πϕ̃) := E
E∼DE

[
Csafe

E (πϕ̃)
]

≤ ϵ, (1)

for a user-specified safety tolerance ϵ, while also post-
processing outputs from ϕ as lightly (i.e., non-conservatively)
as possible in order to allow the robot to optimize task
performance.

IV. BACKGROUND: CONFORMAL PREDICTION

We leverage the theory of conformal prediction (CP) to
perform rigorous uncertainty quantification for perception. Here,
we provide a brief overview of conformal prediction and refer
interested readers to [5, 39] for a more detailed discussion.

Given N i.i.d. (or exchangeable) samples U1, . . . , UN of
a scalar random variable U , we compute the threshold, q̂1−ϵ,
such that the next sample, Utest, satisfies,

P[Utest ≤ q̂1−ϵ] ≥ 1− ϵ, (2)

q̂1−ϵ =

{
U(⌈(N+1)(1−ϵ)⌉) if ⌈(N + 1)(1− ϵ)⌉ ≤ N,

∞ otherwise,

where U(1) ≤ U(2) ≤ . . . ≤ U(N) are the order statistics
(sorted values) of the N samples U1, . . . , UN . In the CP
literature, the non-conformity score U represents a measure of
the (in)correctness of a model.

The guarantee in (2) is marginal, i.e., (2) holds over the
sampling of both the calibration dataset U1, . . . , UN and the
test variable Utest. Hence, we will need to generate a fresh set
of i.i.d. calibration data Ũ1, . . . , ŨN for the guarantee to hold
for a new sample Ũtest. However, in practice, one typically
only has access to a single dataset of examples; inferences
from this dataset must be used for all future predictions on test
examples. In this work, we use the following dataset-conditional
guarantee [28, 29] that doesn’t require us to generate of N new
samples for every test prediction and holds with probability
1− δ over the sampling of the calibration dataset:

P[Utest ≤ q̂1−ϵ|U1, . . . , UN ] ≥ Beta−1
N+1−v,v(δ), (3)

v := ⌊(N + 1)ϵ̂⌋,

where, Beta−1
N+1−v,v(δ) is the δ−quantile of the Beta distribu-

tion with parameters N + 1− v and v, and we can choose ϵ̂
to achieve the desired 1− ϵ coverage.



Fig. 2: Our proposed method is amenable to a range of
perception systems, e.g., bounding-box predictors (top), which
output a map with predicted bounding boxes (green dashed
boxes), and occupancy predictors (bottom), which output a
map with predicted occupied regions.

V. CALIBRATING THE PERCEPTION SYSTEM

In this section, we describe our approach to the uncertainty
quantification of a pre-trained perception system. We focus on
the challenges highlighted in Section I: providing statistical
assurances on safe generalization to novel environments and
ensuring that the offline calibration procedure is robust to
shifts in the distribution of states induced by the online
implementation of the planner.

We consider two types of perception systems: (i) perception
systems that output bounding boxes predicting the locations
of objects in the environment, and (ii) perception systems that
perform scene reconstruction and output occupancy grid maps
representing the occupancy of the environment. For example,
Figure 2 illustrates the maps produced by (i) the bounding-box
predictor and (ii) the occupancy prediction.

A. Misdetection Rate

Our key idea for ensuring generalization to new, unseen
environments and tackling the distribution shift arising from
the closed-loop deployment of the calibrated perception system
with a plannner is to use a policy-independent misdetection
cost, C̃E , which considers worst-case errors across all states in
an environment1, C̃E(ϕ) := maxs∈S 1X occ ̸⊆X occ

s
. We present a

calibration procedure that bounds this misdetection cost with
high probability in a new environment, and thus guarantee the
correctness of the calibrated perception system independent
of the robot policy using CP. Moreover, we note that the
perception system can be fine-tuned to the target deployment
environments to reduce the nominal misdetection rate, which
we discuss in Appendix A.

1It would be infeasible to consider all possible states in an environment. In
practice, we use a sampling-based motion planner and consider a fixed set of
samples for our calibration that could be used by any planner.

B. Calibration Procedure

Dataset. We assume access to a dataset of N i.i.d. environments
D = {E1, . . . EN} ∼ DE (cf. Section III). Let Xi denote the
configuration space of environment Ei (e.g., x-y location).
In each environment, Ei, we have access to the ground-truth
occupied space X occ

i and the predicted occupied space X occ
s,i ,

generated by the pre-trained perception system ϕ for each
state s ∈ S. Care is required to ensure that the calibration
environments are representative of deployment environments.
As such, we construct the calibration dataset using real-world
environments or create simulation environments using real-
world data [40–42] to ensure sufficient variation in environmen-
tal factors (e.g., geometry and locations of obstacles, lighting,
etc.).

Calibration. In each calibration environment Ei, we define a
parameter qi that monotonically scales the predicted occupied
space to be X occ

s,i (qi). In other words, as we increase qi, X
occ
s,i (qi)

expands monotonically. We find the qi such that the ground
truth occupied space is fully enclosed by the scaled prediction,
i.e., X occ

i ⊆ X occ
s,i (qi),∀s ∈ S, where, S is assumed to be

a finite, discrete set. In Section VII, we provide concrete
examples on how to choose the parameter q for the two types
of perception models considered. We define the non-conformity
score for environment Ei to be the minimum required scaling
parameter qi in that environment:

Ui = min
qi

qi s.t X occ
i ⊆ X occ

s,i (qi),∀s ∈ S. (4)

Observe that Ui ≤ 0 =⇒ X occ
i ⊆ X occ

s,i , ∀s ∈ S and a growing
Ui signals a worse performance of the pre-trained perception
system. We can compute the nonconformity scores for the
i.i.d. sampled environments {E1, . . . , EN} and the quantile

q̂1−ϵ = Quantile
(
U(1), . . . , U(N);

⌈(N+1)(1−ϵ̂)⌉
N

)
. Here, ϵ̂ is

the calibration threshold such that the dataset conditional
guarantee (3) achieves the desired (1 − ϵ)−coverage with
probability 1− δ = 0.99 over the sampling of the calibration
dataset.

Proposition 1. Consider the calibrated perception system ϕ̃
that modifies every output of the perception system ϕ by scaling
the predicted occupied space as X occ

s,i (qi). With probability
1 − δ over the sampling of the dataset used for calibration,
the calibrated perception system, ϕ̃, is guaranteed to have an
ϵ-bounded misdetection rate on new test environments:

E
Etest∼DE

[
C̃Etest(ϕ̃)|U1, . . . , UN

]
≤ ϵ. (5)

Proof: As seen in Section IV, conformal prediction gives
us the following dataset-conditional guarantee on a new
sample of the nonconformity score Utest corresponding to a test
environment Etest. With probability 1 − δ over the sampling
of U1, . . . , UN ,

P[Utest ≤ q̂1−ϵ|U1, . . . , UN ] ≥ Beta−1
N+1−v,v(δ).



We can rewrite the event Utest ≤ q̂1−ϵ as:

{Utest ≤ q̂1−ϵ}

=
{
q̂1−ϵ ≥ min

qtest
qtest | X occ

test ⊆ X occ
s,test(qtest),∀s ∈ S

}
=
{
X occ

test ⊆ X occ
s,test(q̂1−ϵ),∀s ∈ S

}
=
{
C̃Etest(ϕ̃) = 0

}
,

which gives us the desired result (5).
Proposition 1 gives us a formal assurance on the correctness

of the perception system independent of the robot’s policy.
As we describe below, the calibrated perception can thus be
combined with any safe planner to bound the collision rate to ϵ.
The calibrated perception outputs are guaranteed to be correct
with probability 1− ϵ over environments. Since we accounted
for the perception error from every state in each environment,
the resulting calibrated outputs are also guaranteed to be correct
from every state in new test environments. Given that we have
addressed the challenge of closed-loop distribution shift, we
can now utilize this calibrated perception system with any safe
planner to obtain a statistical assurance on robot safety.

C. Implementation with a limited field-of-view

A natural question that arises after following the calibration
procedure described above is: what happens if the robot is not
able to observe all objects in the environment from all states?
This may happen due to a limited sensing capability or because
some parts of the environment are occluded from view. We
address this issue in our calibration procedure implementation
by only taking into account perception errors for objects that
are within the field-of-view of the robot in a given state, and
masking any region of the ground-truth occupied space that
is not visible to the robot, i.e., X occ (which now depends on
state s) is the ground-truth visible occupied region. Hence, the
perception system correctness assurance stated above holds for
all objects within the field-of-view of the robot at any given
state. The presence of possibly occluded obstacles is dealt with
by a safe planner, which we describe next.

VI. PERCEPTION AND PLANNING

Fig. 3: The configuration
space is partitioned into three.

Fig. 4: The filter takes union
over the free space.

We now focus on the online implementation of the method
described in Section V to reduce conservatism when used in

conjunction with a safe planner. In general, a safe planner
takes into account the dynamics of the robot and produces
plans in the state space S. Let X be the configuration space
of the robot (e.g., x-y location for a point). The configuration
space of any given environment E can be partitioned into the
ground-truth occupied space X occ, the known free space X free,
and the unknown space X unknown (Figure 3).

Non-deterministic filter. We utilize the assurance obtained
from Section V to implement a non-deterministic filter [43,
Ch. 11.2.2], which shrinks the occupied space and grows the
known free space over time (Figure 4). Suppose the robot’s
perceived partition of the configuration space X at time t is
denoted by the triplet {X free

t ,X occ
t ,X unknown

t }, which represents
the overall map mt of the environment. At a new time step
t+ 1, the robot’s perception system returns a new estimation
for the occupied space, X̂ occ

t+1. The filter intersects the occupied
spaces: X occ

t+1 = X occ
t ∩ X̂ occ

t+1. We compute the new estimation
of free space X̂ free

t+1 based on X occ
t+1, considering occlusion and

limited field of view. The new perceived free space is updated
by taking the union: X free

t+1 = X free
t ∪ X̂ free

t+1.
The non-deterministic filter pairs effectively with our method

in Section V for two key reasons: 1) it mitigates the conser-
vatism of our expansion procedure for the predicted occupied
space by intersecting X occ

t , rapidly reducing its size even if
the initial prediction with CP bounds appears generous; and
2) Proposition 1 ensures that with high probability in a new
test environment, X free

t never intersects the true occupied space
X occ. We demonstrate the rapid expansion of known free space
in Figure 6 for our simulated setup (Section VII).

Safe planning. With our formal assurance on the estimated
free space X free

t , we can utilize any safe planner [44–46] to
ensure end-to-end safety, as long as the planner includes a
safety filter that takes into account the robot’s dynamics in
order to reject potentially unsafe actions with the assumption of
known robot states and a static (but unknown) environment [8,
Corollary 1.4].

For our simulation and hardware experiments, we use the
safe planner proposed in [9] due to its approximate optimality.
The safety filter in this case is an inevitable collision set (ICS)
constraint [47], where the robot is forbidden to enter any state
that will eventually result in collision no matter what control
actions are taken. Within the known free space X free

t , the robot
plans using the fast marching tree algorithm (FMT⋆) [48]
with dynamics [49]. If the goal is not visible within X free

t , the
robot plans to an intermediate goal on the boundary of its
free space. The intermediate goals are chosen based on the
cost-to-come from current robot state to the intermediate goal,
and the distance-to-go from the intermediate goal to the actual
goal. The robot replans whenever it receives a sensor update
and an updated X free

t+1 from its non-deterministic filter, and
accounts for ICS constraints [50] in-between sensor updates.

Proposition 2. For any user-specified safety tolerance ϵ, the
calibrated perception system ϕ̃ in Proposition 1 combined with
any safe planner that chooses actions based on the outputs of



the non-deterministic filter ensures the end-to-end safety for
the overall policy πϕ̃:

Csafe
DE

(πϕ̃) := E
E∼DE

[
Csafe

E (πϕ̃)
]

≤ ϵ, (6)

where Csafe
E (πϕ̃) is the cost for safety from Section III.

Proof: As shown in Proposition 1, the misdetection
rate of the calibrated perception system ϕ̃ is ϵ-bounded on
environments drawn from D at each time step t, where the
robot is at state st. In other words, the predicted occupied
space X̂ occ

t at each time step contains the true occupied space
X occ with high probability across environments. Conversely, the
predicted free space X̂ free

t at each time step does not intersect
with the true occupied space X occ with high probability across
environments. If we consider a safety-relevant misdetection
cost at time step t:

Ĉsafe
E (ϕ̃, st) =

{
1 if X occ ⊆ X̂ free

t (unsafe),
0 otherwise,

(7)

then the misdetection rate over the set of states should be
ϵ-bounded across environments by Proposition 1:

E
E∼DE

max
t∈[0,T ]

Ĉsafe
E (ϕ̃, st) ≤ ϵ. (8)

Because the expectation in Equation (8) is over the set
of environments, the following statement holds in any new
environment (with probability 1−δ over the calibration dataset
of environments),

P
{

max
t∈[0,T ]

Ĉsafe
E (ϕ̃, st) = 0

}
≥ 1− ϵ. (9)

Given mt = {X free
,X occ

,X unknown}, a safe planner never
drives the robot outside of the free space. Therefore, the safe
planner guarantees Csafe

E (πϕ̃) ≤ C̃safe
E (ϕ̃).

P
{
Csafe

E (πϕ̃) = 0
}
≥ 1− ϵ. (10)

This result is a direct consequence of the formal assurance
on the calibrated perception system that ensures correctness
from any state in a new test environment (sampled i.i.d. from
the same distribution as the calibration environments) with
probability 1− ϵ over environments.

We discuss extensions of our perception and planning
approach to problems with sensor and dynamics uncertainty
in Appendix A.

VII. SIMULATED EXPERIMENTS

We evaluate our approach for vision-based navigation in the
PyBullet simulator [51] using a diverse set of chairs from the
3D-Front dataset [42].

Simulation Environment. We specify the environment dis-
tribution by randomly placing 1 − 5 chairs from the diverse
3D-Front dataset [42] in an 8 m ×8 m room (Figure 5). We
construct the simulation environment using CAD models of real
furniture pieces from the 3D-Front dataset [42], which contains

Fig. 5: Simulation environment in Pybullet.

t = 1 t = 8

t = 14 t = 17

Fig. 6: Simulation and non-deterministic filter updates. The
robot begins with large occupied space predictions due to
the inflation obtained through offline calibration (Section V).
After a few updates, the predicted occupied space X occ

shrinks
significantly.

a highly diverse array of industrial CAD models developed by
professional designers.
Robot Platform. We evaluate each method on the Unitree
Go1 quadruped robot, where we task the robot to navigate to
a goal location that is about 7m away from the initial location
of the robot. The robot camera has a field of view of 70◦ and
a visibility range of [1, 5] m.
Metrics for experiments. We utilize the following metrics for



VLM

What did I leave on the sofa? A) Hat 
B) Backpack C) Laptop D) Jacket

Semantic 
values

Semantic-value-weighted 
Exploration

(x, y, yaw) Next Pose

New Observation

Semantic map

A - 0.28
B - 0.17
C - 0.12
D - 0.43

Stop?
Answer 

prediction

Question-Image 
relevance

0.10 1.72
0.98
0.59

Blocksworld

<Rules>

<Examples>

Current problem

Initial: red block is on top of 
the orange block, orange 
block is on top of blue block, 
yellow block is on top of red 
block and blue block is on 
the table.

Goal: red block is on top of 
the yellow block and yellow 
block is on top of blue block

(3) 

(1)

(2) 

[0, 3, 1, 4]

[4, 1, 3, 0]reverse

[3, 1, 4, 0]
shift_left 

...

[1, 3, 0, 4]shift_left 

swap [0, 1, 4, 3]

[0, 4, 1, 3]reverse

Self-verification

Forward/Backward planning

Plan the initial to final steps.

Or

Choose a direction

Plan the final to initial steps.

Forward plan

Plan: [shift_left, repeat]
[4, 8, 3, 4] shift_left -> [8, 3, 4, 4]
…
Matches final? <Yes/No>

Reversed backward plan

Final answer

[repeat, shift_left]

Flip the problem

Initial: red on yellow on blue

Goal: yellow on red on 
orange on blue

Plan with the flipped

1. Unstack red from yellow
…
5. Put yellow on red

1. Unstack yellow from red
…
5. Put red on yellow

Flip back the plan

(Directed) Graph Planning

<Examples>

Current problem

Node 0 points to nodes 4, 5, 8
Node 1 points to nodes 0, 9
…
Node 9 points to 6
Node 10 points to nodes 1, 9

Initial: 0

Goal: 9

Flip the problem

Node 0 points to 1, 2
Node 1 points to 10
…
Node 9 points to 1, 10
Node 10 points to 8

Initial: 9

Goal: 0

Plan with the flipped

Flip back the plan

(0, 4, 8, 10, 9)

(9, 10, 8, 4, 0)

Simulation Hardware

Fig. 7: [ϵ = 0.15] (Left) Results for the simulated experiments across 100 new environments with 1 - 5 chairs (see Section
VII). (Right) Results for the hardware trials across 30 different chair configurations with 4-8 chairs described in Section VIII.
Here the path length is averaged only for successful trials for both PWC and CP-avg. due to the varying goal locations.

our simulation experiments: a trial is counted as a collision if
the robot collides with an obstacle and we count a misdetection
for a trial if the free space predicted by the planner has any
intersection with the ground-truth occupancy of the obstacles.
We say that the goal has been reached in a given trial if the
robot is able to navigate to within 1 m around the goal in less
than 140 s. We also record the average path length for trials
in which the goal is reached.

A. Bounding-Box Predictors

We first consider perception systems that output bounding-
boxes. For our implementation, we use the 3DETR end-to-end
transformer model [52] as the pre-trained perception system.
We compare our approach (Perceive with Confidence — PWC)
to three baselines to illustrate its effectiveness in achieving a
user-specified safety rate. First, we consider the most common
approach of directly using the outputs of the perception
system [52] in our planning pipeline. We call this baseline
3DETR. Next, we consider the common practice of fine-tuning
the outputs of the perception system using a small dataset
of task-representative environments Dtune (cf. Section A-A).
We call this perception system 3DETR-fine-tuned. Lastly,
we perform calibration using conformal prediction; however,
instead of accounting for the closed-loop distribution shift,
we bound the misdetection rate averaged across environments
and states (similar to [20], which does not utilize conformal
prediction, but quantifies expected errors in a perception system
for a pre-defined distribution of states). We refer to this baseline
as CP- avg. We consider two variations of our approach for
comparison to the above baselines. First, we refine 3DETR
outputs using our calibration procedure described in Section V.
We call this approach PWC. Second, the 3DETR outputs are
fine-tuned and calibrated using split conformal prediction as
described in Appendix A-A; we call this approach PWC-fine-
tuned.

Calibration and Planning. We implement the calibration
procedure presented in Section V with the perception model
ϕ instantiated as a bounding box predictor, mapping the
observation ot to a union of bounding boxes. Formally,

we represent each bounding box j with the minimum and
maximum coordinates in each dimension,

[
dmin, dmax

]
j
, where

d = (x, y) represents the spatial coordinates. The predicted
occupied space is the union of 15 predicted most likely
bounding boxes: X occ

= ∪15
j=1

[
dmin, dmax

]
j
. The parameter

q for this perception model is the inflation of the bounding
boxes along each dimension. Therefore, in a given calibration
environment Ei, from a given state s, and with a specific
inflation parameter qi, the predicted occupied region is defined
as:

X occ
s,i (qi) := ∪15

j=1

[
dmin
s,i − qi, d

max
s,i + qi

]
j
. (11)

We collect a calibration dataset of 400 environments as
specified. In the 8 m ×8 m room, we use a fixed set of 400
sampled configurations for the sampling-based motion planner
and use the same set of samples for the calibration procedure.
Similarly, we collect an additional fine-tuning dataset Dtune
consisting of 100 environments. These environments include
ones with occlusions of the goal and objects in the scene.
With an allowable misdetection rate of ϵ = 0.15, we obtain
q̂0.85 = 0.75 m for PWC, q̂0.85 = 0.65 m for PWC-fine-tuned,
and q̂0.85 = 0.05 m for CP-avg. through calibration. The
planner replans and obtains a new sensor observation to update
the filter every 0.5 s or less (if the previous plan is already
completed).

Misdetection Rate. We examine the misdetection rate, i.e.,
whether obstacles in the scene are classified as free space at
any point during a trial, of our method, PWC, and the baseline
CP-avg., which is also calibrated using conformal prediction
but without accounting for the closed-loop distribution shift.
We vary the allowable misdetection bound ϵ for each method
and compute the rate of misdetections in 100 test environments.
As seen in Figure 8, our method guarantees a misdetection rate
lower than the threshold ϵ while CP-avg. violates this threshold
for every ϵ considered.

Collision Rate. We compare PWC to the baselines in 100 new
environments drawn from the same distribution as calibration
environments. Figure 5 illustrates one such test environment.
Figure 6 shows the evolution of the free space in this environ-
ment using PWC. Although the initial calibrated perception



Fig. 8: As we relax the confidence threshold by increasing ϵ,
the misdetection rate increases but remains bounded for PWC.
The baseline method has a misdetection rate much higher than
acceptable.

system outputs are inflated, the non-deterministic filter is able to
expand the predicted free space in a few time steps and ensure
that the robot can navigate without unnecessary conservatism,
while guaranteeing safety. The results are summarized in
Figure 7. We observe that our proposed approaches, PWC
and PWC-fine-tuned, have no collisions in any environments.
While the robot reaches the goal in a slightly lower percentage
of environments compared to baselines, we emphasize that ours
is the only approach that is able to ensure a low, statistically
guaranteed misdetection rate across test environments.

Ablations. To further illustrate the effect of misdetections on
safety, we consider a different distribution of environments
wherein we randomly place a single chair in the straight line
path between the initial position of the robot and the goal. For
a safety threshold 1 − ϵ = 0.85, we compare PWC, CP-avg,
and 3DETR. The results are provided in Figure 9 for 100 new
test environments, wherein the goal is reached if the robot
navigates to within 2 m of the goal. In these environments,
the desired safety rate is not met by the baselines while our
approach is still statistically guaranteed to be safe.

Fig. 9: A comparison between collision rates of different
perception systems that use the same planner.

We provide additional simulation results in Appendix C that

illustrate: 1) the effects of closed-loop distribution shifts on
safety wherein PWC is robust to an increase in the level of
closed-loop distribution shift, while the baseline CP-avg. is not,
leading to higher collision rates; 2) the tradeoff in different
partition sizes for fine-tuning using split-CP; 3) the effect of
varying the allowable safety rate ϵ; 4) the effect of varying the
number of sampled configurations; and 5) comparing PWC to
a method of heuristically inflating bounding boxes.

B. Occupancy Predictors

Now, we consider perception systems that predict occupancy
maps. Specifically, we demonstrate the framework with the
scene completion model NU-MCC [7]. NU-MCC takes an
RGB-Depth image as input and predicts the value of the
unsigned distance function (UDF) of each point in space. The
original NU-MCC model includes a 3D reconstruction phase
(Figure 10), where points with UDF less than a threshold,
q, are kept and shifted to the surface of objects. Although
this procedure results in better 3D visualizations, it breaks the
correspondence between the threshold q and spatial coverage.
In our method, we only use the predicted UDF from NU-MCC.
In addition, we exponentially scale all the predicted UDFs to
achieve a more uniformly covered range of UDF values.

Calibration and Planning. To define the non-conformity score,
we find the smallest threshold qi in each environment Ei such
that the predicted occupancy covers the ground truth occupancy.
Formally, the observation acquired at time step t is denoted ot,
represented by an RGB-depth image. The perception model,
denoted ϕ, is the combination of (i) the adapted NU-MCC
model which predicts UDF for each point in space, (ii) filtering
out points in space with UDF > q, and (iii) projecting the
resulting pointcloud onto a 2D occupancy grid as a bird’s eye-
view. This perception pipeline is summarized in Figure 11. Thus,
ϕ maps ot to the occupancy representation of the environment,
Z . In our implementation, Z is an n × n grid with boolean
entries, with 1 representing occupied and 0 otherwise. We
use P ∈ Z to denote one point on the grid in Z . In a given
calibration environment Ei, from a given state s, and a specific
threshold qi, the predicted occupancy is defined as:

X occ
s,i (qi) := {P ∈ Z | UDF(P ) ≤ qi}. (12)

As qi increases, X occ
s,i (qi) expands monotonically, satisfying the

property stated in Section V. Therefore, proposition 1 follows,
guaranteeing that the calibrated system ϕ̃ predicts occupancies
that cover the ground truth with high probability.

We generate a calibration dataset consisting of 300 envi-
ronments from the distribution described in Section VII. In
addition, the chairs are randomly rotated about the z-axis
(Figure 13, middle and right). We use a fixed set of 812 sampled
configurations, same as the set used by the sampling-based
planner described in Section VI, modified for the occupancy
map setting. With an allowable misdetection rate of ϵ = 0.15,
we obtain q̂0.85 for PWC-NU-MCC and NU-MCC-CP-avg
through calibration, and use the (exponentiated) default for
NU-MCC. For PWC calibrated on task distribution with rotated



Fig. 10: NU-MCC scene completion with 3D reconstruction.

Fig. 11: Perception model ϕ based on NU-MCC, showing the construction of calibrated occupancy maps with provable
guarantees on the correctness of the resulting map.

chairs and more states, we obtain q̂0.85 = 1.10 m. Note that
the q̂1−ϵ for PWC stands for the bounding box inflation rather
than the UDF threshold.

Results. Figure 12 summarizes the simulation results. We
compare our method based on occupancy prediction (PWC-
NU-MCC) against the non-calibrated version (NU-MCC), as
well as the method applying conformal prediction without
accounting for closed-loop distribution shift (NU-MCC-CP-
avg). We also compare against our method based on bounding
box predictors, as described in Section V (PWC). We use the
same metrics as described in Section VII.

For the results shown in Figure 12, we use a test dataset of
100 environments from the same distribution as the calibration
dataset. The rotated chairs are no longer axis-aligned on

the xy-plane, causing unnecessary conservatism when using
the bounding box representation. Indeed, Figure 12 shows
that PWC-NU-MCC has a much higher success rate (40%
improvement) and shorter path length compared to PWC, while
the safety rate is maintained. The four methods in the figure
are arranged in the order of least to most conservative from
left to right, showing a significant drop in collision rate and
mis-detection rate with our methods, which also fall within
the guarantee of less than 15%.

Figure 13 shows the trajectory of the robot in the same sim-
ulation environment, using three different perception modules.
The left plot shows PWC as described in Section VII-A, while
the middle and right plots show PWC-NU-MCC and NU-MCC
respectively. For PWC, the bounding boxes are unnecessarily



Fig. 12: Results for the simulated experiments with occupancy
predictors, across 100 environments with rotated chairs.

inflated, causing the robot to get stuck in the overly conservative
estimate of free space. PWC-NU-MCC preserves the safety
guarantee while characterizing the true free space much more
accurately, reaching the goal safely. NU-MCC overestimates
the free space and collides with the obstacle.

VIII. HARDWARE EXPERIMENTS

Now, we validate the end-to-end statistical safety assurance
of our approach on a quadruped robot in the task of vision-
based navigation with two sets of experiments. As in our
simulation setup in Section VII, the robot is tasked with
navigating to a goal location while avoiding different chairs
placed in varying configurations across an 8 m ×8 m room.
We conduct two sets of experiments, which we term “nominal”
and “fast”. In the nominal experiments, the robot navigates
with an average forward speed of 0.4 m/s, whereas in the fast
experiments, we speed up the robot to 1.5 m/s. In both sets
of experiments, we utilize the perception system calibrated
in simulation with a guaranteed safety rate of 1 − ϵ = 0.85,
as described in Section VII-A. Our calibration in simulation
environments with realistic and diverse environments ensures
that the performance of the perception system remains similar
in its simulation and hardware implementations. We compare
our PWC method against CP-avg. (defined in Section VII).
We run the nominal experiments across 30 different physical
environments (60 trials total) and run the fast experiments
across 15 environments (30 trials total). One challenge is to
ensure a minimal sim-to-real gap for perception. In order to
address this, we utilize depth measurements as the robot’s
sensory input. This choice facilitates a small sim-to-real gap,
as observed in prior work [53, 54].

A. Experiment Setup

We represent the robot’s state as st = [x, y, vx, vy]
T where x

and y are its position in the environment and vx and vy are the
respective velocities (See Figure 14 for the coordinate system).
For each trial, the robot is initialized around position [4, 0] m
(with the origin set to the bottom left corner of the room) and
has 60 seconds to reach the goal. For the nominal experiments,
the robot replans every second in a receding horizon manner
using the safe planner described in Section VI. The goals
are varied every 10 environments and include positions [2, 7]

m, [4, 7] m, and [6, 7] m, with a radius of 1 m. For the fast
experiments, the robot replans every 0.8 s. The goal is set at
[6, 7] m, and the radius is increased to 1.5 m.

Hardware. We use the Unitree Go1 quadruped robot with
fully onboard sensing and computation. The robot is equipped
with a ZED 2i RGB-D camera and a ZED Box computer
attached to the base of the robot as shown in the top row
of Figure 14. The Zed 2i provides the Go1 with point cloud
observations with a 70◦ field of view and a visibility range
of [1, 5]m. The Zed 2i also uses vision-inertial odometry to
provide accurate positional state estimates in the environment.
The Zed Box includes an 8-core ARM processor and a 16GB
Orin NX GPU. This allows us to process the point cloud
observations in order to produce bounding boxes using the pre-
trained 3DETR model [52]. The bounding boxes are aggregated
over time to update the estimated free, occupied, and unknown
spaces as described in Section VI. The safe planner described
in Section VI is used to output Cartesian velocity commands
bounded at a speed of 0.8m/s; these commands are sent from
the Zed Box over UDP to the Go1’s processor. Our method
is implemented in real-time on the Zed Box hardware with
replanning every 0.5 seconds of which the non-deterministic
filter takes 0.00025 seconds to run. The dynamics of the Go1
are estimated using MATLAB’s System Identification Toolbox
[55] and are provided in Appendix D-A.

Environments. For both sets of experiments, we test the robot
in different environments, consisting of various chair configu-
rations and geometries in an 8 m ×8 m room. Configurations
range from random, occluded goal, occluded chairs, clustered
chairs, and narrow paths (approximately 1.8 m in width leaving
0.4 m of available free space for PWC to find). For the nominal
experiments, each environment has between 4 and 8 chairs
present. See Appendix D-B and D-C for the unseen chairs
used in testing and the environment configurations respectively.
We use a Vicon motion capture system to log the ground-
truth placement and bounding boxes of the chairs for each
environment. For the fast experiments, each environment has
6 chairs present. Since recording ground-truth data introduces
latency that prevents the robot from reaching its target velocity
of 1.5 m/s, we report only collision and goal-reach rates for
this set of experiments.

B. Results

For PWC, we used the q̂0.85 = 0.73 m threshold found in
simulation to inflate the predicted bounding boxes returned
from 3DETR in order to achieve 85% confidence that our
robot will remain safe in new environments. We summarize key
statistics of PWC compared to CP-avg. (q̂0.85 = 0.02 m) across
30 different environments in Figure 7 (right). Importantly, our
trials demonstrate that our confidence bound holds on hardware
in real environments and without being too conservative. PWC
was safe through 90% of the trials and also had comparable
path length to the baseline. Meanwhile, the baseline struggled
in the real environments by having misdetections in each
trial and colliding with a chair in half of the trials. See



Fig. 13: Comparison of trajectories in the same environment using three different perception systems: (Left) PWC with 3DETR
and bounding box representations, (Middle) PWC-NU-MCC, (Right) NU-MCC. The robot marks the start position, and the
dashed circle represents the goal area. The blue region shows predicted free space, and the black regions represent the ground
truth occupied space, either as bounding boxes or as occupancy grids. The robot’s trajectory is marked in red. Among all
methods, only PWC-NU-MCC enables the robot to safely reach the goal.

Figure 14 for trajectories and free space estimations through
several environments with narrow spaces, occluded chairs, and
occluded goals. The supplementary video contains full example
trials.

PWC’s low misdetection rate and higher success rate in these
trials emphasize the efficacy of the bounding box inflation
provided by CP paired with the non-deterministic filter. This
principled pairing inflates the (potentially poor) bounding box
detections to properly capture obstacles but quickly shrinks
the occupied space with the filter such that the robot can still
navigate effectively.

For faster navigation, we employ two complementary strate-
gies: minimizing idle planning time via concurrent planning and
execution, and increasing the robot’s velocity in the pre-sampled
configuration space. First, we implement a concurrent planning
and execution framework using threading. The planning process
is divided into two stages: an initial policy computed from
the starting state and a continually updated future policy
computed from the robot’s predicted future state. At the start
of each trial, the robot calculates an initial policy to reach the
goal. During execution, a separate thread uses the robot’s
predicted future state, the state at the end of the current
policy, to concurrently generate the next policy phase. This
synchronization of execution and planning minimizes idle
planning time. To support the increased speed, we re-sample
the configuration space by keeping the positions unchanged
but scaling up the speed, so that the calibration results would
still hold. The re-sampled states, along with pre-computed
reachability sets using the robot dynamics, are used to generate
planned trajectories at high speed.

As a result, we increase the robot’s average forward speed
from about 0.4 m/s to 1.5 m/s and reduce the average
task completion time in similar environments from about 28
seconds to 8 seconds. These performance gains are achieved
without significant compromise in the safety rate of hardware
validations of our previous method. We present the accelerated
hardware results across 15 new environments (different from
those shown in Appendix D-C) and compare the collision rate

and success rate against the CP-avg. baseline, as shown in
Table I.

TABLE I: Results for accelerated hardware experiments with
PWC and CP-avg.

Method Collision Goal Reached
Accelerated PWC 20% 53.3%

CP-avg. 66.7% 33.3%

IX. DISCUSSION AND CONCLUSIONS

We present a modular framework, PWC, for rigorously
quantifying the uncertainty of a pre-trained perception model
in order to provide an end-to-end statistical safety assurance
for perception-based navigation tasks. Notably, our statistical
assurance holds for generalization to new environmental factors
(e.g., new obstacle geometries and configurations) and allows
for the distribution shift of states that may occur during closed-
loop deployment of the perception system with the planner.
Additionally, we address the conservatism introduced by the
inflation of bounding boxes, by applying PWC to occupancy
predictors and achieving much better performance without
sacrificing the safety assurance. We validate the theoretical
safety assurances provided by PWC with our simulation and
hardware experiments, demonstrating significant empirical
improvements in safety compared to baseline approaches that
do not consider closed-loop distribution shift.
Limitations and Future Work. One limitation of our work is
the assumption of static obstacles. As a future direction, we are
interested in quantifying uncertainty in both the state of agents
moving in the environment and predictions of their semantic
labels (e.g., “pedestrian” vs. “bicyclist”), and utilizing game-
theoretic planning techniques that account for the uncertainty in
the agents’ current state and future motion. Additionally, while
our definition of safety is limited to collision avoidance, we are
interested in extending it to richer settings such as navigation
on limited surface area. Lastly, we are interested in uncertainty
quantification for perception models that support tasks beyond



Fig. 14: Hardware trial results. (Top) The physical layouts of three example environments. (Bottom) The robot trajectories
performed in these environments. Estimated free space is shaded, and robot trajectories are represented by solid lines: our
method in blue and the baseline in orange. Our method (PWC) successfully navigates to the goal through challenging areas,
whereas the baseline misdetects free spaces, leading to collisions in some cases.

point-to-point navigation, e.g., calibrating the outputs of multi-
modal foundation models for language-instructed navigation
where we ensure accurate detection of target objects as well
as semantically unsafe regions [56]. We expect that rigorous
uncertainty quantification is a necessary step towards fully
leveraging the power of large foundation models [1] while
safely integrating them into future robotic systems.
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APPENDIX A
PERCEPTION AND PLANNING EXTENSIONS

In this section, we outline a few extensions to the basic
technical approach described in Sections V and VI: (i) fine-
tuning a pre-trained perception model and (ii) incorporating
sensor and dynamics uncertainty.

A. Fine-Tuning a Pre-Trained Perception Model

In Section V, we assumed access to a pre-trained perception
model ϕ that outputs occupancy predictions of the environment.
The conformal prediction-based uncertainty quantification
procedure then uses the calibration dataset D = {E1, . . . , EN}
of environments to produce a calibrated perception system
ϕ̃, which lightly processes the outputs of ϕ scaling with a
parameter q. In practice, it may also be useful to fine-tune
ϕ for our target deployment environments before performing
uncertainty quantification.

This can be achieved using split conformal prediction [29],
where one splits the overall dataset D into D = Dtune ∪Dcal.
If the perception model takes the form of a neural network ϕw

parameterized by weights w, we can use Dtune to fine-tune w
(or the weights of a residual network). We can then utilize Dcal
in order to perform the CP-based calibration as described in
Section V. We demonstrate the fine-tuning process for the case
of bounding box predictions in Section VII, and show that this
additional fine-tuning step before calibration can reduce the
conservatism of outputs and improve end-to-end success rates.

The typical choice of loss function for training a bounding
box predictor is the generalized intersection-over-union (gIoU)
loss [57], a differentiable version of the IoU loss: given a
ground-truth bounding box A and a predicted box B, one
computes L(A,B) := |A ∩B|/|A ∪B|. However, while this
loss is popular in computer vision, it is not suitable for robot
navigation. In particular, the IoU loss is symmetric: it does not
distinguish between the ground-truth and predicted bounding
box and thus does not encourage the predicted box to contain
the ground-truth box. We propose a modification to the gIoU
loss in Appendix B, which encourages that the predicted
bounding box encloses the ground-truth box while also ensuring
that the predicted box is not too large. Similar to the gIoU
loss, this loss is (almost-everywhere) differentiable and scale
invariant. We utilize this loss for fine-tuning in our experiments
(Section VII). However, one could use any other method for
finetuning not limited to training a simple neural network with
the gIoU loss [58].

B. Sensor Errors and Dynamics Uncertainty

In Section III, we modeled the robot’s sensor as a determin-
istic mapping σ : S × E → O, which provides observations
from a particular state in a given environment. This formulation
allows us to also incorporate sensor errors. Specifically, any
errors or randomness in the sensor can be formally included
as part of the environment E ∈ E . Thus, in addition to
sampling environmental variables such as obstacle locations,
geometries, etc., each environment E also samples random
variables that prescribe sensor errors from each state s ∈ S in

the environment. This way of modeling sensor errors allows:
(i) σ to be deterministic (since all sources of randomness are
included in E), (ii) the sensor errors to be dependent on the
relative pose of the robot relative to obstacles (e.g., modeling
the fact that depth estimates are often further from ground-
truth depth values as distance increases), and (iii) the modeling
of correlations in sensor errors from different locations (e.g.,
capturing the fact that sensor errors from nearby robot locations
can be highly correlated). Modeling time-varying sensor errors
(i.e., different sensor errors from the robot state at different
times) is not as immediate, but could potentially be incorporated
by augmenting the state space S to include the time-step.

In addition to errors in sensing, one can also account for
uncertainty in the dynamics of the robot by using a robust
planner (see [8] for an overview). In the experiments described
in Section VIII, we incorporate uncertainty by generating plans
that prevent the robot from entering the inevitable collision
set (cf. Section VI) even with bounded uncertainty in the
dynamics.

APPENDIX B
LOSS FUNCTION FOR FINE-TUNING

A\B
B\A

C\(A∪B)

A

BC

Fig. 15: Visualization of different terms in the loss function
for a single object setting.

We use an almost-everywhere differentiable loss function for
training. The loss function seeks to ensure that the predicted
shape (e.g., bounding box) encloses the ground truth shape
while also ensuring that the predicted shape is not too large.

Let’s consider the simplest setting wherein we have one
object in the scene and we are making a single prediction. In
this case, A denotes the (convex) ground-truth shape and B
denotes the (convex) predicted shape. Let C denote the convex
hull of A and B. Our loss function is a weighted combination
of three terms,

L := w1l1 + w2l2 + w3l3

= w1
|A\B|
|A|

+ w2
|B\A|
|B|

+ w3
|C\(A ∪B)|

|C|
.

The first term is the most important; it tries to ensure that
B encloses A. The second term tries to make sure that B is
not much larger than it needs to be, see Figure 15. The first
and second terms are sufficient if A and B are overlapping.
However, if they do not overlap, there is no gradient information
provided by the first two terms. Following [57], we introduce
a third loss term in order to provide gradient information when
the shapes do not intersect. The loss terms l1, l2, l3 are each
bounded within [0, 1]. Hence, if we choose w1, w2, w3 such
that

∑
i wi = 1, then the overall loss is also bounded within

[0, 1].



Now let’s consider the setting wherein, A denotes the union
of multiple ground-truth bounding boxes (say we have m
objects in the scene) and B is the union of all the predicted
bounding boxes (we predict n boxes). We consider all the
individual bounding box predictions Bi,∀i ∈ {1, . . . n} and
associate the closest visible ground-truth bounding box Ai to
each prediction. Now we can define Ci as the convex hull of
Ai and Bi and the resulting loss function, Li,

Li := w1
|Ai\Bi|
|Ai|

+ w2
|Bi\Ai|
|Bi|

+ w3
|Ci\(Ai ∪Bi)|

|Ci|
.

Hence, the overall loss is,

L =
1

n

n∑
i=1

Li.

Please refer to [57, Appendix 4.3] for instructions on how to
compute the loss analytically for axis-aligned bounding boxes.

APPENDIX C
ABLATIONS

We provide additional simulation results to illustrate the
effects of: (1) closed-loop distribution shifts on safety wherein
PWC is robust to an increase in the level of closed-loop
distribution shift while the baseline, CP-avg., is not which
leads to higher collision rates for CP-avg., (2) the tradeoff
in different partition sizes for fine-tuning using split-CP, (3)
the effect of varying ϵ on the safety rate, (4) impact of using
different number of sampled configurations for calibration
and online planning, and (5) comparison against additional
uncertainty-aware perception systems that use a heuristic notion
of uncertainty
Effects of closed-loop distribution shift on misdetections.
In addition to the challenge of generalization, we highlight
another challenge that any uncertainty quantification method
for perception must tackle. Suppose we fix a policy πϕ (that
uses perception system ϕ) and collect a dataset of observations
in different calibration environments from the states that result
from applying πϕ. We can use ground-truth bounding boxes
in these environments to produce a calibrated perception
system ϕ̃ with a statistical assurance on correctness for the
distribution of observations induced by πϕ. However, if we now
apply the policy πϕ̃ using the calibrated perception system ϕ̃,
the resulting distribution of states will be different from the
distribution that forms the calibration dataset, thus invalidating
the statistical assurance. We refer to this challenge as closed-
loop distribution shift, which is similar to challenges that arise
in offline reinforcement learning [59] and imitation learning
[60].

To illustrate the effect of closed-loop distribution shifts on
misdetections, we used exactly the same setup described above
to obtain the simulation results in Figure 7. We changed the
planner cost to have a different weighting on the cost-to-go. For
one setting, we chose a weight w = 1 on the cost-to-go, which
is the same as the weighting on the cost-to-come. In another
setting, we chose a weight w = 10 on the cost-to-go, and hence
a 10× more emphasis on the cost-to-go compared to the cost-
to-come. Table II shows the KL-divergence between the states

visited by the planner and the sampling distribution of states
for calibration as a measure of the closed-loop distribution shift.
Increasing closed-loop shifts lead to higher misdetections. One
can see that a simple change in the planner parameters can lead
to potentially large changes in the safety rates for CP-avg. The
closed-loop shift we may see in practice is unknown apriori.
Hence, it is difficult to make any statements on the planner
safety in closed-loop despite using CP for calibration of the
perception system. PWC, on the other hand, is robust to the
closed-loop shifts and can still satisfy the misdetection and
safety assurance regardless of the planner parameters used.

TABLE II: A comparison of the effect of changing the planner
parameters on CP-avg. and PWC.

Method Collision Mis-
detection

KL-
divergence

CP-avg. (w = 1) 14% 54% 2.09
CP-avg. (w = 10) 2% 64% 2.72
PWC (w = 1) 0% 0% 1.48
PWC (w = 10) 0% 2% 2.04

Effect of finetuning dataset size. Upon collecting a
calibration dataset of about 400 environments, as described in
the experiment setup in Section VII, we may choose to use a
smaller subset of the calibration dataset to further finetune the
pre-trained perception model to perform better in the types of
environments we are interested in deploying the robot in. We
consider the effect of different dataset split sizes for finetuning
and then calibration. Using a larger set of environments for
finetuning |Dtune| may result in a better tuned model, but
will leave fewer environments for calibration, |Dcal|, resulting
in a more conservative ϵ̂ and q̂1−ϵ that satisfies the dataset-
conditional guarantee (3), and vice versa. This trade-off is seen
in Table III, where we observe the best performance when we
have an equal split between finetuning and calibration.
Effects of varying ϵ on safety rate. We compare our method,
PWC, to the baseline CP-avg. We vary the allowable safety
rate ϵ for each method, and compute the rate of safety in
100 test environments. As seen in Table IV and Figure 8, our
method not only guarantees that the rate of misdetections to
be bounded, but also the safety rate. The safety rate of PWC
is also consistently better than that of CP-avg.
Effect of varying the number of sampled configurations.
For our experiments, we used a fixed set of 2000 sampled
configurations. However, depending on the planner configu-
ration requirements and desired speed of computation, the
user may decide to have a different number of configuration
samples for calibration and planning. We study the change in
the CP inflation, q̂0.85, the resulting collision, misdetection,
and task completion (reaching goal) rates. As we can see in
Table V, in our case, we have far fewer misdetections with
fewer samples, but we also observe a decrease in number
of times the robot reaches the goal. We suspect that with
fewer samples of configurations (consisting of x, y, vx, vy), it
is harder for the sampling-based motion planner to find feasible



TABLE III: A comparison of the effect of various partition sizes for fine-tuning and calibration for PWC.

Split size (|Dtune|+ |Dcal|) q̂0.85 (in m) Collision Misdetection Goal Reached
100 + 300 0.68 0% 1% 89%
200 + 200 0.64 0% 1% 94%
300 + 100 0.93 0% 2% 76%

TABLE IV: A comparison of the safety rates of CP-avg. and
PWC when we vary the confidence threshold ϵ.

ϵ CP-avg. PWC
0.20 95% 100%
0.10 98% 99%
0.15 99% 100%
0.10 98% 100%
0.05 98% 100%

TABLE V: A comparison of the CP inflation q̂0.85 when we
vary the number of sampled configurations.

# samples q̂0.85 Collision Mis-
detection

Goal
Reached

1050 0.7086 0% 1% 47%
1500 0.6910 0% 0% 57%
2000 0.75 0% 7% 90%

paths. On the other hand, we also observe a less conservative
q̂0.85 when we use fewer samples; this is presumably also a
result of using fewer samples to compute the non-conformity
score that comprises of the worst-case perception error across
all configurations.
Comparison to heuristic inflation. We compare PWC to
the baseline method of inflating the bounding box predictions
based on some heuristic confidence level, i.e., we scale the
bounding box with 1 - confidence (so we scale the boxes
where we are less confident by a larger amount). As shown in
Table VI, While this baseline demonstrates a higher completion
rate, both the collision rate and the misdetection rate increase
significantly, leading to unsafe situations. Further, while our
method provides a statistical safety guarantee, the baseline
method does not admit any formal assurance.

TABLE VI: A
comparison of the effects of using heuristic inflation versus PWC.

Method Collision Misdetection Goal Reached
PWC 0% 7% 90%

Heuristic 3% 67% 97%

APPENDIX D
EXPERIMENT SETUP

A. System Identification

To perform system identification of the Unitree Go1
quadruped robot, we collected trajectories using a Vicon
motion capture system. We then used MATLAB’s system
identification toolbox [55]. Specifically, we provided an initial
linear ODE grey box model guess and then used prediction
error minimization (PEM) for refinement. The resulting system
is shown in (13) where x and y describe the positional state of
the robot in the environment, vx and vy describe the respective
velocities, and ux and uy describe the respective commanded
velocities.

B. Chair Test Dataset

Our test dataset of chairs for the first set of experiments
conducted in Section VIII included 8 chairs with diverse
sizes and geometries unseen in training and calibration for
the perception system. Test chairs are shown below in Figure
16.

C. Environments

As described in Section VIII, in the first set of experiments,
the robot was tested in 30 unique environments with varying
furniture configurations and goals. The following 30 figures
show an image of each configuration, accompanied by a bird’s-
eye map of the obstacle and goal locations.



Fig. 16: New, unseen test chairs used in original hardware experiments. In
the fast experiments, only chairs 1, 2, and 5 (left to right) were used.
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